Saturday, July 25, 2015

Pharmaceutical Cleaning Validation Method References for Alconox



Pharmaceutical Cleaning Validation Method References for Alconox, Inc. Detergents

A cleaning validation involves testing for acceptable residues on pharmaceutical manufacturing or medical device surfaces. The validation involves residue identification, residue detection method selection, sampling method selection, setting residue acceptance criteria, methods validation and recovery studies, and finally writing a procedure and training operators. This procedure is used to document acceptable residues 3 or more times and then a rational monitoring program to maintain a validated state is put in place. If you are changing any part of your procedure or cleaner, first clean the new way, collect data and then clean the old way before using any equipment while you are in the process of validating the new procedure.
Residue identification - in a pharmaceutical manufacturing environment involves; the cleaner, primary ingredients, excipients, decomposition products, and preservatives. This document is intended to help with the cleaner residue identification.
Residue detection method selection - for cleaners can involve specific methods for specific cleaner ingredients such as; high performance liquid chromatography (HPLC), ion selective electrodes, flame photometry, derivative UV spectroscopy, enzymatic detection and titration, or it can involve non-specific methods that detect the presence of a blend of ingredients such as: total organic carbon, pH, and conductivity. The FDA prefers specific methods, but will accept non-specific methods with adequate rationales for their use. For investigations of failures or action levels, a specific method is usually preferable. The later section of this document lists references to several methods for each cleaner brand.
Sampling method selection - for cleaners involves choosing between rinse water sampling, swabbing surfaces, coupon sampling, or placebo sampling. Rinse water sampling involves taking a sample of an equilibrated post-final rinse that has been recirculated over all surfaces. Rinse samples should be correlated to a direct measuring technique such as swabbing. Swabbing involves using wipe or swab that is moistened with high purity water (WFI) that is typically wiped over a defined area in a systematic multi-pass way always going from clean to dirty areas to avoid recontamination - ie. 10 side by side strokes vertically, 10 horizontally and 10 each with the flip side of the swab in each diagonal direction. For TOC analysis very clean low background swabs or wipes and sample vials such should be used. The Texwipe large Alpha Swab 714A or 761 have been used, these are available in kits with clean sample containers. Quartz glass fiber filter papers have been used successfully. Coupon sampling involves the use of a coupons or an actual removable piece of pipe that is dipped into high purity water to extract residues for analysis. Placebo testing involves using placebo product and analyzing for residues from the previous batch.
Setting residue acceptance criteria - in pharmaceutical and medical device manufacturing requires setting residue acceptance levels for potential residues such as the active drug, excipients, degradation products, cleaning agents, bioburden and endotoxins. These levels are determined based on potential pharmacological, safety, toxicity, stability, and contamination effects on the next product using that surface or equipment. Limits are typically set for visual, chemical, and microbiological residues.
The cleaning agent limits are generally covered under chemical criteria. Chemical limits can be expressed as a maximum concentration in the next product (ug/ml), amount per surface area (ug/cm2), amount in a swab sample (ug or ug/ml), maximum carryover in a train (mg or g), or concentration in equilabrated rinse water (ug/ml). You should have a calculated safety based acceptance limit, and you can have a lower internal action level, and a lower process control level based on actual manufacturing and measuring experience.
Cleaning agent safety based limits are typically calculated from a safety factor of an acceptable daily intake (ADI), a (1/1000 or more) reduction of an LD50 preferably by the same route of administration, or reproductive hazard levels. If the calculated limit is found to be higher than a less than 10 ppm carryover to the next batch, then the limit can be set to the more stringent 10 ppm carryover level for the safety based limit.

No comments:

Post a Comment